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Hardware Counters

• Small set of registers that count 
events, which are occurrences of 
specific signals related to the 
processor’s function

• Monitoring these events facilitates 
correlation between the structure 
of the source/object code and the 
efficiency of the mapping of that 
code to the underlying 
architecture.



Overview of PAPI

• Performance Application Programming 
Interface

• The purpose of the PAPI project is to 
design, standardize and implement a 
portable and efficient API to access the 
hardware performance monitor 
counters found on most modern 
microprocessors.

• Parallel Tools Consortium project 
http://www.ptools.org/



PAPI Counter Interfaces

• PAPI provides three interfaces to the 
underlying counter hardware:
1. The low level interface manages hardware 

events in user defined groups called 
EventSets. 

2. The high level interface simply provides the 
ability to start, stop and read the counters 
for a specified list of events.

3. Graphical tools to visualize information.
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PAPI Preset Events

• Proposed standard set of events 
deemed most relevant for 
application performance tuning

• Defined in papiStdEventDefs.h
• Mapped to native events on a 

given platform
–Run tests/avail to see list of PAPI 

preset events available on a platform



PAPI 2.1 Release

• Platforms
– Linux/x86, Windows 2000

• Requires patch to Linux kernel, driver for 
Windows

– Linux/IA-64
– Sun Solaris/Ultra 2.8
– IBM AIX/Power

• Requires pmtoolkit (available from 
http://alphaworks.ibm.com/)b

– SGI IRIX/MIPS
– Cray T3E/Unicos

• Fortran and C binding and MATLAB 
wrappers



High-level Interface

• Meant for application programmers 
wanting coarse-grained 
measurements

• Not thread safe
• Calls the lower level API
• Allows only PAPI preset events
• Easier to use and less setup 

(additional code) than low-level



High-level API

• C interface
PAPI_start_counters
PAPI_read_counters
PAPI_stop_counters
PAPI_accum_counters
PAPI_num_counters
PAPI_flops

• Fortran interface
PAPIF_start_counters
PAPIF_read_counters
PAPIF_stop_counters
PAPIF_accum_counters
PAPIF_num_counters
PAPIF_flops



PAPI_flops

• int PAPI_flops(float *real_time, float 
*proc_time, long_long *flpins, float *mflops)
– Only two calls needed, PAPI_flops before and after 

the code you want to monitor
– real_time is the wall-clocktime between the two calls
– proc_time is the “virtual” time or time the process 

was actually executing between the two calls (not as 
fine grained as real_time but better for longer 
measurements)

– flpins is the total floating point instructions executed 
between the two calls

– mflops is the Mflop/s rating between the two calls



PAPI High-level Example

long long values[NUM_EVENTS];
unsigned int

Events[NUM_EVENTS]={PAPI_TOT_INS,PAPI_TOT_CYC};
/* Start the counters */
PAPI_start_counters((int*)Events,NUM_EVENTS);
/* What we are monitoring? */
do_work();
/* Stop the counters and store the results in values */
retval = PAPI_stop_counters(values,NUM_EVENTS);



Low-level Interface

• Increased efficiency and 
functionality over the high level 
PAPI interface

• About 40 functions
• Obtain information about the 

executable and the hardware
• Thread-safe
• Fully programmable
• Callbacks on counter overflow



Low-level Functionality

• Library initialization
PAPI_library_init, PAPI_thread_init, 

PAPI_shutdown
• Timing functions

PAPI_get_real_usec, 
PAPI_get_virt_usec
PAPI_get_real_cyc, PAPI_get_virt_cyc

• Inquiry functions
• Management functions
• Simple lock

PAPI_lock/PAPI_unlock



Event sets

• The event set contains key information
– What low-level hardware counters to use

– Most recently read counter values

– The state of the event set (running/not 
running)

– Option settings (e.g., domain, granularity, 
overflow, profiling)

• Event sets can overlap if they map to the 
same hardware counter set-up.
– Allows inclusive/exclusive measurements



Event set Operations

• Event set management
PAPI_create_eventset, 
PAPI_add_event[s], PAPI_rem_event[s], 
PAPI_destroy_eventset

• Event set control
PAPI_start, PAPI_stop, PAPI_read, 
PAPI_accum

• Event set inquiry
PAPI_query_event, PAPI_list_events,... 



Simple Example

#include "papi.h“
#define NUM_EVENTS 2
int Events[NUM_EVENTS]={PAPI_FP_INS,PAPI_TOT_CYC}, EventSet;

long_long values[NUM_EVENTS];
/* Initialize the Library */
retval = PAPI_library_init(PAPI_VER_CURRENT);
/* Allocate space for the new eventset and do setup */
retval = PAPI_create_eventset(&EventSet);
/* Add Flops and total cycles to the eventset */
retval = PAPI_add_events(&EventSet,Events,NUM_EVENTS);
/* Start the counters */
retval = PAPI_start(EventSet);

do_work();  /* What we want to monitor*/

/*Stop counters and store results in values */
retval = PAPI_stop(EventSet,values);



Using PAPI with Threads

• After PAPI_library_init need to register 
unique thread identifier function

• For Pthreads

retval=PAPI_thread_init(pthread_self, 0);

• OpenMP

retval=PAPI_thread_init(omp_get_thread_num, 0);

• Each thread responsible for creation, 
start, stop and read of its own counters



Using PAPI with Multiplexing

• Multiplexing allows simultaneous use 
of more counters than are supported 
by the hardware.

• PAPI_multiplex_init() 
– should be called after PAPI_library_init() 

to initialize multiplexing
• PAPI_set_multiplex( int *EventSet );

–Used after the eventset is created to turn 
on multiplexing for that eventset

• Then use PAPI like normal



Issues with Multiplexing

• Some platforms support hardware 
multiplexing, on those that don’t 
PAPI implements multiplexing in 
software.

• The more events you multiplex, 
the more likely the representation 
is not correct.



Native Events

• An event countable by the CPU can 
be counted even if there is no 
matching preset PAPI event

• Same interface as when setting up 
a preset event, but a CPU-specific 
bit pattern is used instead of the 
PAPI event definition



Callbacks on Counter Overflow

• PAPI provides the ability to call 
user-defined handlers when a 
specified event exceeds a specified 
threshold.

• For systems that do not support 
counter overflow at the OS level, 
PAPI sets up a high resolution 
interval timer and installs a timer 
interrupt handler.



PAPI_overflow

• int PAPI_overflow(int EventSet, int 
EventCode, int threshold, int flags, 
PAPI_overflow_handler_t handler)

• Sets up an EventSet such that 
when it is PAPI_start()’d, it begins 
to register overflows

• The EventSet may contain multiple 
events, but only one may be an 
overflow trigger.



Statistical Profiling

• PAPI provides support for 
execution profiling based on any 
counter event.

• PAPI_profil() creates a histogram 
of overflow counts for a specified 
region of the application code.



Perfometer

• Application is instrumented with PAPI
– call perfometer()
– Call mark_perfometer(Color)

• Application is started. At the call to 
perfometer, signal handler and timer are set 
to collect and send the information to a Java 
applet containing the graphical view.

• Sections of code that are of interest can be 
designated with specific colors
– Using a call to mark_perfometer(‘color’)

• Real-time display or trace file



Perfometer Display
Machine info

Process &
Real time

Flop/s Rate

Flop/s Min/Max



Perfometer Parallel Interface



Third-party Tools 
that use PAPI

• DEEP/PAPI (Pacific Sierra) 
http://www.psrv.com/deep_papi_top.html

• TAU (Allen Mallony, U of Oregon) 
http://www.cs.uoregon.edu/research/paracomp/tau/

• SvPablo (Dan Reed, U of Illinois) 
http://vibes.cs.uiuc.edu/Software/SvPablo/svPablo.htm

• Scalea (Thomas Fahringer, U. Vienna)
http://www.par.univie.ac.at/project/scalea/

• Vprof (Curtis Janssen, Sandia Livermore 
Lab) http://aros.ca.sandia.gov/~cljanss/perf/vprof/

• Cluster Tools (Al Geist, ORNL)
• DynaProf (Phil Mucci, UTK) 

http://www.cs.utk.edu/~mucci/dynaprof/



DynaProf 

An Object Code Instrumentation System for Dynamic Profiling

Philip J. Philip J. Mucci       Mucci       muccimucci@cs.utk.edu@cs.utk.edu November, 2001November, 2001



What is DynaProf?

• A portable tool to instrument a 
running executable with Probes
that monitor application 
performance.

• Simple command line interface.
• Open Source Software
• A work in progress…



DynaProf Methodology

• Make collection of run-time 
performance data easy by:
–Avoiding instrumentation and 

recompilation
–Using the same tool with different 

probes
–Providing useful and meaningful 

probe data
–Providing different kinds of probes
–Allowing custom probes



Why the “Dyna”?

• Instrumentation is selectively 
inserted directly into the program’s 
address space.

• Why is this a better way?
–No perturbation of compiler 

optimizations
–Complete language independence
–Multiple Insert/Remove 

instrumentation cycles



DynaProf Design

• GUI, command line & script driven 
user interface

• Uses GNU readline for command 
line editing and command 
completion. 

• Instrumentation is done using:
–Dyninst on Linux, Solaris and IRIX
–DPCL on AIX



DynaProf Commands

load <executable>
list [module pattern]
use <probe> [probe args]
instr module <module> [probe args]
instr function <module> <function> [probe

args]
stop
continue
run [args]
Info
unload



Dynaprof Probes

• papiprobe
• wallclockprobe
• perfometerprobe



DynaProf Probe Design

• Can be written in any compiled 
language

• Probes export 3 functions with a 
standardized interface.

• Easy to roll your own (<1day) 
• Supports separate probes for 

MPI/OpenMP/Pthreads



Future development

• GUI development
• Additional probes

–Perfex probe
–Vprof probe

• Better support for parallel 
applications



For More Information

• http://icl.cs.utk.edu/papi/
–Software and documentation
–Reference materials
– Papers and presentations
–Third-party tools
–Mailing lists

• http://www.ncsa.uiuc.edu/UserInfo/Resources/Software/Tools/PAPI/



Current and Future Work

• Ports – P4, Power4, McKinley, 
Compaq Alpha

• Accuracy and efficiency issues
• Infrastructure for dynamic 

instrumentation of parallel 
applications (DPCL?)

• Experimentation with IA-64 
performance monitoring features 
(e.g., event qualification, EARs) 


